Dynamic Modeling of the Human Coagulation Cascade Using Reduced Order Effective Kinetic Models

نویسندگان

  • Adithya Sagar
  • Jeffrey D. Varner
چکیده

In this study, we present a novel modeling approach which combines ordinary differential equation (ODE) modeling with logical rules to simulate an archetype biochemical network, the human coagulation cascade. The model consisted of five differential equations augmented with several logical rules describing regulatory connections between model components, and unmodeled interactions in the network. This formulation was more than an order of magnitude smaller than current coagulation models, because many of the mechanistic details of coagulation were encoded as logical rules. We estimated an ensemble of likely model parameters (N = 20) from in vitro extrinsic coagulation data sets, with and without inhibitors, by minimizing the residual between model simulations and experimental measurements using particle swarm optimization (PSO). Each parameter set in our ensemble corresponded to a unique particle in the PSO. We then validated the model ensemble using thrombin data sets that were not used during training. The ensemble predicted thrombin trajectories for conditions not used for model training, including thrombin generation for normal and hemophilic coagulation in the presence of platelets (a significant unmodeled component). We then used flux analysis to understand how the network operated in a variety of conditions, and global sensitivity analysis to identify which parameters controlled the performance of the network. Taken together, the hybrid approach produced a surprisingly predictive model given its small size, suggesting the proposed framework could also be used to dynamically model other biochemical networks, including intracellular metabolic networks, gene expression programs or potentially even cell free metabolic systems. Processes 2015, 3 179

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Modeling of the Human Coagulation Cascade Using Reduced

Dynamic Modeling of the Human Coagulation Cascade Using Reduced Order Effective Kinetic Models Report Title Cell-free systems offer many advantages for the study, manipulation and modeling of metabolism compared to in vivo processes. Many of the challenges confronting genome-scale kinetic modeling can potentially be overcome in a cell-free system. For example, there is no complex transcriptiona...

متن کامل

Dynamic Modeling of Cell-Free Biochemical Networks Using Effective Kinetic Models

Dynamic Modeling of Cell-Free Biochemical Networks Using Effective Kinetic Models Report Title In this study, we present a novel modeling approach which combines ordinary differential equation (ODE) modeling with logical rules to simulate an archetype biochemical network, the human coagulation cascade. The model consisted of five differential equations augmented with several logical rules descr...

متن کامل

Effective Removal of Acid Black 1 Dye in Textile Effluent Using Alginate from Brown Algae as a Coagulant

In this study, the Acid Black 1 dye containing effluent collected from a dyeing unit was examined with the alginate extracted from the marine brown algae, Sargassum sp. for its removal. Batch experiments were carried out using standard Jar test apparatus. Fourier Transform InfraRed (FT-IR) Spectroscopy and Scanning Electron Microscopy (SEM) techniques were used to characterize the raw algin...

متن کامل

Convective drying of atmospheric pressure cold plasma pretreatment saffron stigmas: kinetic modeling

In this study, the drying kinetics of saffron stigmas pretreated by atmospheric pressure cold plasma pretreatment (15, 30, 45 and 60 s) followed by hot air drying (60°C and 1.5 m/s) were modeled using 10 conventional mathematical thin layer models. The use of cold plasma pretreatment reduced drying time and enhanced effective moisture diffusivity (Deff). The most accurate models describing beha...

متن کامل

Kinetic modeling of methylene blue adsorption onto acid-activated spent tea: A comparison between linear and non-linear regression analysis

The kinetic study of methylene blue (MB) adsorption using acid-activated spent tea (AAST) as an adsorbent from aqueous solution with the aim of comparing linear and non-linear regression analysis methods was performed at varying initial MB concentrations (10-100 mg/l). Hence, spent tea leaves, which were activated using concentrated sulfuric acid, were prepared. The physicochemical characterist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015